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ABSTRACT.  This paper presents a comparison of two
techniques used to estimate the statistical confidence
intervals on modal parameters identified from measured
vibration data. The first technique is Monte Carlo simulation,
which involves the repeated simulation of random data sets
based on the statistics of the measured data and an
assumed distribution of the variability in the measured data.
A standard modal identification procedure is repeatedly
applied to the randomly perturbed data sets to form a
statistical distribution on the identified modal parameters.
The second technique is the Bootstrap approach, where
individual frequency response function (FRF) measurements
are randomly selected with replacement to form an
ensemble average.  This procedure, in effect, randomly
weights the various FRF measurements.  These weighted
averages of the FRFs are then put through the modal
identification procedure. The modal parameters identified
from each randomly weighted data set are then used to
define a statistical distribution for these parameters. The
basic difference in the two techniques is that the Monte
Carlo technique requires the assumption on the form of the
distribution of the variability in the measured data, while the
bootstrap technique does not. Also, the Monte Carlo
technique can only estimate random errors, while the
bootstrap statistics represent both random and bias
(systematic) variability such as that arising from changing
environmental conditions. However, the bootstrap technique
requires that every frequency response function be saved
for each average during the data acquisition process.
Neither method can account for bias introduced during the
estimation of the FRFs. The confidence intervals resulting
from the applications of the two techniques to modal
properties identified from frequency response function data
measured on the Alamosa Canyon bridge in southern New
Mexico will be presented and compared.

1. INTRODUCTION.

An important element of any experimental procedure is the
ability to quantify the uncertainty in the test results that can
be attributed to either random or bias (systematic) variability.
However, a review of the experimental modal analysis
literature shows relatively few studies aimed at developing
methods to quantify the uncertainty in estimated modal
parameters.  References 1- 6 are some examples of these
studies.  To the authors’ knowledge, attempts at comparing
different statistical methods on similar experimental modal
analysis data sets have not been published.  This paper will
summarize such a study that was performed on modal data
obtained from a bridge structure.

This study has been motivated by a program to develop
vibration-based damage identification procedures.  Highway
bridges have been the primary structure studied in this
investigation.  Several investigators [7-11] have examined
the variability in identified modal parameters for bridge
structures caused by environmental effects and other
systematic sources of variability.  These sources of
variability were shown to produce significant changes in the
identified modal properties of the structure.  However, the
prime motive for exploring this issue resulted from a study
where various damage ID methods were applied to data
from a bridge structure and subsequently to numerical
simulations of the experiment [12].  Ambiguous results were
obtained where the methods did not work as well on the
noise-free numerical data generated from the finite element
model.  These results led the authors to search for methods
to statistically quantify the uncertainties in the identified
modal parameters and subsequently to quantify
uncertainties in the damage ID parameters [13].  As a result,
the authors believe that any vibration-based damage
detection method can not be applied with confidence unless



the variability in the vibration response of the structure can
be quantified in some manner.

Reference 14 reports the authors’ first attempt at generating
a general procedure for analyzing the uncertainty in
identified modal parameters. This reference summarizes the
development of a Monte Carlo simulation procedure to
quantify the 95% confidence limits on the identified modal
parameters.  The study reported herein extends this work by
implementing a bootstrap statistical analysis procedure and
comparing the results obtained with it to those obtained from
the Monte Carlo analysis procedure.  The two statistical
analysis procedures are first described followed by a
summary of their application to a numerically generated set
of randomly perturbed vibration data.  These procedures are
then applied to two sets of data measured on a bridge
structure.  These two data sets represent a case where
random variability is assumed to be the primary source of
variability as well as a case where systematic variability is
known to be present.

2. MONTE CARLO ANALYSIS

The first step in the Monte Carlo Analysis procedure is to
establish statistical uncertainty bounds on the measured
frequency response function (FRF) magnitude and phase.
The procedure developed by Bendat and Piersol [15] for a
randomly excited single input/single output model is
employed for this estimate.  This procedure assumes that
the variability is random and distributed in a Gaussian
manner.  A further assumption is made that the record
lengths are long enough such that resolution bias errors are
negligible.  The analysis presented by Bendat and Piersol
leads to the following relations for the standard deviation, σ,
on the magnitude and phase for the FRFs at each frequency
value, ω,:

( ) ,)(
2)(

)(1
)(

2

ω
ωγ

ωγ
ωσ mean

dmean

mean H
n

H
−

= and (1)

( ) )(
2)(

)(1
)(

2

ω
ωγ

ωγ
ωσ mean

dmean

mean H
n

H ∠
−

=∠ . (2)

In Eqs. 1 and 2 )(ωmeanH  is the mean value of the FRF
magnitude at frequency ω, )(ωmeanH∠  is the corresponding
mean value of the FRF phase angle, )(2 ωγ mean is the mean
value of the coherence function, dn is the number of
measurement averages used to form the mean values of the
FRF and coherence.

Monte Carlo analyses [16] were then performed, using the
previously determined uncertainty bounds on the FRFs, to
establish statistical uncertainty bounds on the identified
modal parameters (frequencies, damping ratios, and mode
shapes).  The basic idea of a Monte Carlo analysis is the

repeated simulation of random input data, in this case the
FRFs with estimated mean and standard deviation values,
and compilation of statistics on the output data, in this case
the rational polynomial curve-fit [17] results.  The steps
followed to implement this procedure are:

1. Measure the averaged FRF and coherence functions
for each degree of freedom (DOF).

2. At each frequency interval random Gaussian noise is
added to the magnitude and phase of the mean FRF for
all measurements.  This noise is based on the mean
values of the FRFs obtained from the ensemble
averages made during the measurement process and
standard deviation values calculated from Eqs. 1 and 2.
A unique random number is used to perturb each FRF
at each discrete frequency.

3. The rational polynomial curve fit is applied to the
perturbed FRFs and standard modal properties
(resonant frequencies, modal damping, mode shape
amplitudes and phases) are identified.

4. Steps 1, 2, and 3 are repeated and the mean and
standard deviation for the identified modal properties
are calculated at the end of each iteration.  The process
is repeated until the means and standard deviations
converge (typically less than 100 iterations).

Ninety-five percent confidence limits for each modal
parameter are established based on the mean and standard
deviation values calculated from the Monte Carlo
simulations along with the assumption of the Gaussian
distribution on the variations in these parameters.  Note that
this procedure does not require storage of individual FRF
measurements that make up the ensemble averages at
each DOF.

3. BOOTSTRAP ANALYSIS

The bootstrap analysis procedure [18] randomly selects
individual FRF measurements at each DOF to form the
ensemble average. Because the FRFs for a particular DOF
are selected at random and “with replacement,” a single
FRF sample may be used more than once in the ensemble
average while others may not be included.  This process
results in ensemble averages that are based on random
weighting of the sample FRFs.

In application, the same sequence of randomly selected
sample FRFs was used for each DOF.  This selection
procedure preserves the temporal variations in measured
inputs and responses across all DOFs.  As an example,
assume that a large truck on an adjacent bridge applies a
significant unmeasured input into the bridge that is being
testing during a particular FRF measurement.  The selection
process described above will assure that all DOFs include
this measurement with equal weighting.  Such a weighting
scheme is important when attempting to accurately assess
the variations of modal parameters using global curve-fitting
algorithms (algorithms that estimate modal parameter by



fitting all FRFs simultaneously).   This selection process
should accurately account for variations that are a function
of spatial location such as a particularly noisy sensor.

Once the randomly weighted ensemble averages are formed
for each DOF, the rational polynomial parameter estimation
procedure is applied and the modal parameters are
identified.  This procedure is repeated numerous times to
form a histogram of the identified modal parameters.

The percentile interval method discussed in [18] is then
used to establish the 95 percent confidence limits on the
identified modal parameters.  The values of the parameters
are placed in an ordered list.  Values of the parameters
corresponding to the upper and lower 2.5 percentile are
used to define the 95 percent confidence limits.

The steps used to implement the bootstrap procedure are:

1. Measure and store N FRF samples at each DOF.

2. At each DOF randomly select N FRFs, with
replacement, and form an ensemble average.  The
same random sequence of FRFs is used at each DOF.

3. Apply the rational polynomial curve-fit procedure to
these ensemble averages to determine the modal
parameters (resonant frequencies, modal damping,
mode shape amplitudes and phases).

4. Repeat steps 1-3 and form a histogram for each modal
parameter.

5. Calculate the mean value of each modal parameter.
Place the parameters into an ordered list and estimate
the 95 percent confidence limits from the values
corresponding to the upper and lower 2.5 percentiles.

Note that no assumption on the distribution of the identified
parameters, no assumption about the form of the input or
response, and no assumption about the number of inputs or
responses are made in this analysis.  The bootstrap method
does require each individual FRF to be stored for each
measurement DOF.  As with the Monte Carlo method, no
quantitative method was employed to determine the number
of iterations needed for the bootstrap method to converge.
Rather, various numbers of iterations were tried until there
was no significant change in the confidence limits calculated
for the various parameters.  Typically, approximately 100
iterations were required for convergence.

Finally, it should be noted that both the Monte Carlo and the
bootstrap procedures will not account for bias errors
introduced by procedures to estimate the FRFs (for
example, those introduced by windowing functions) or for
bias errors introduced during the parameter estimation
procedure.

4. TEST ON SIMULATED DATA

To test the two statistical analysis procedures, a set of 30
randomly perturbed FRFs were generated for a single
degree of freedom system.  This idealized system has a

mean resonant frequency and damping ratio of 2.5 Hz and
1%, respectively.  A standard deviation of 0.002 Hz was
assigned to the resonant frequency and a standard
deviation of 0.08% was assigned to the damping value.
These frequency and damping values along with the
corresponding  standard deviations are based on results
obtained from bridge structures [11].  A unit mass was
assigned to this system.  The generated FRFs, H(iω), were
defined at 0.03125 Hz increments and have the form
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* denotes complex conjugate.

Note that standard deviation on the resonant frequency is
smaller than one frequency interval.  An alternate case was
studied where the standard deviation of the resonant
frequency was 0.1 Hz.  However, the example reported is
considered more severe.  Care must be taken in generating
variations in damping such that negative damping values
are not specified.   Prior to performing the statistical
analyses, the rational polynomial curve-fitting algorithm was
applied to each of the 30 generated FRFs.  The curve-fitting
algorithm predicted the specified parameters almost exactly,
hence it can be concluded that for this simulated data no
bias error is being introduced by this algorithm.  Further
studies are needed to determine if this statement will still
hold for multi degree-of-freedom systems with closely
spaced modes.

Figure 1 shows an overlay of the 30 FRF magnitudes
generated for this system.  The variations in the FRFs can
only be seen when the plot is expanded around the resonant
frequency.  Coherence functions were not generated for the
implementation of the Monte Carlo procedure.  Instead, the
30 FRFs were used to generate a mean and standard
deviation for the real and imaginary part at each frequency.
The Monte Carlo procedure then generated perturbed FRFs
based on these statistics and the assumption of a Gaussian
distribution.

Table 1 summarizes the results of applying the Monte Carlo
and bootstrap statistical analysis methods to the numerically
generated data.  This example shows that for a case



where the variations in the measured date correspond
to the assumptions that the Monte Carlo method is
based upon, the procedure accurately predicts the
uncertainty in the parameters identified from the
simulated data.  Similarly, the bootstrap analysis also
predicts the correct uncertainty in the
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Fig. 1 Simulated FRFs.

TABLE 1
Comparison of the Monte Carlo and bootstrap methods on

numerically simulated data

Method
(Iteration)

ωmean

ω
95% Conf.
Intervals

ζmean

ζ
95% Conf.

Intervals
True Value 2.50 Hz 0.0037 Hz 1.00% 0.18%
BS (100) 2.50 Hz 0.0040 Hz 1.00% 0.16%
BS (500) 2.50 Hz 0.0041 Hz 1.00% 0.17%
BS (1000) 2.50 Hz 0.0039 Hz 1.00% 0.17%
MC (50) 2.50 Hz 0.0032 Hz 1.00% 0.16%
MC (75) 2.50 Hz 0.0036 Hz 0.99% 0.15%
MC (100) 2.50 Hz 0.0036 Hz 0.98% 0.16%
BS = Bootstrap, MC = Monte Carlo

modal parameters.  Note that although a 95%
confidence interval of 0.004 Hz was specified the actual

data used to generate the 30 FRFs had a 95%
confidence interval of 0.0037 Hz.  Similarly, the actual
95% confidence limits on the damping is 0.18%.

Once there was confidence that the statistical analysis
procedures were working correctly, these methods were
applied to data measured on a bridge structure.

5. ALAMOSA CANYON BRIDGE

The Alamosa Canyon Bridge has seven independent spans
with a common pier between successive spans. An
elevation
View of the bridge is shown in Fig.2.  Each span consists of
a concrete deck supported by six W30x116 steel girders.
The roadway in each span is approximately 7.3 m (24 ft)
wide and 15.2 (50 ft) long. A concrete curb and guardrail are
integrally attached to the deck. Four sets of cross braces
are equally spaced along the length of the span between
adjacent girders.  The cross braces are channel sections
(C12x25).  A cross section of the span at the interior cross
braces is shown in Fig. 3.  At the pier the girders rest on
rollers as shown in Fig. 4.  Also shown in Fig. 4 is the
connection detail at the abutment where the beams are
bolted to a half-roller to simulate a pinned connection.  The
bridge is aligned in a north-south direction.

6. DATA ACQUISITION

The data acquisition system and measurement hardware
described in [11] were set up to measure acceleration- and
force-time histories. FRFs and coherence functions were
then calculated from the measured quantities. Sampling
parameters were specified that calculated the FRFs from a
16-s time window discretized with 2048 samples.  The FRFs
were calculated for a frequency range of 0 to 50 Hz.  These
sampling parameters produced a frequency resolution of
0.0625 Hz.  A Force window was applied to the signal from
the hammer’s force transducer and exponential windows
were applied to the signals from the accelerometer.  AC
coupling was specified to minimize DC offsets.

A total of 31 acceleration measurements were made on the
concrete deck and on the girders below the bridge as shown
in Fig. 5.  Five accelerometers were spaced along the length
of each girder.  Because of the limited number of data
channels measurements were not made on the girders at
the abutment or at the pier.  Excitation was applied in the
vertical direction on the top surface of the deck with an
instrumented hammer.  The force-input and acceleration-
response time histories obtained from each impact were
subsequently transformed into the frequency domain so that
estimates of the FRFs and coherence functions could be
calculated.  Thirty averages were used for these estimates.
With the sampling parameters listed above and the overload
reject specified, data acquisition for a specific test usually
occurred over a time period of approximately 30 - 45
minutes.

7. APPLICATION TO THE ALAMOSA CANYON BRIDGE



Two sets of FRFs were investigated for the Alamosa
Canyon Bridge.  The first set of data consisted of 30
averages made early in the morning before the sun hit the
bridge. These measurements were made over a 30-minute
time interval.  Air temperatures remained very constant
during the time of the test.  Traffic on the adjacent bridges
was light during this period.  Therefore, it was assumed that

variability in the FRF measurements made during this test
were the result of random error sources.  Figure 6 shows an
overlay of the thirty FRF magnitudes measured at location 2
during this test. Figure 7 shows the average FRF for location
2. Figure 8 shows the corresponding coherence function
that was used to generate the standard deviations
associated with these measurements.

Figure 2. Elevation View of the Alamosa Canyon Bridge

Figure 3. Cross-section view of the Alamosa Canyon Bridge.

Pier Abutment
Figure 4. Support details at the pier and abutment.
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Fig. 6 Thirty FRFs measured at Pt. 2.
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Fig. 7 Average FRF measured at Pt. 2.
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Fig. 8 Coherence function corresponding to the FRF shown
in Fig. 7.

The second set of data corresponds to measurements made
at two-hour increments over a 24-hr period.  Eleven FRFs,
each of which are the average of 30 measurements made at
the two-hour increments, were analyzed.  These 11 FRF
were analyzed by the bootstrap procedure.  Then the 11
FRFs were averaged along with their corresponding
coherence functions to form the data for the Monte Carlo
analysis.  Therefore, at each DOF, the FRFs and coherence
used in the Monte Carlo analysis were based on 330
measurements made over a 24 hr time period. Figure 9
shows an overlay of the 11 FRFs for DOF 2.  Figure 10
shows the mean FRF for this same DOF and Fig. 11 shows
the corresponding mean coherence function.

From the results presented in [11] it was known that
temperature variations during the day produce up to 5%
changes in the resonant frequencies of this bridge.  These
temperature changes represent a systematic error source



inherent in these data.  Recall that the Monte Carlo
procedure assumes that the error source in random.

Table 2 summarizes the results from the statistical analyses
of the two Alamosa Canyon Bridge data sets.
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Fig. 9 Overlay of 11 averaged FRFs measured at Pt. 2 over
a 24 Hr period.
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Fig. 10 Average FRF measured at Pt. 2 during a 24 Hr.
period.
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Fig. 11.  Coherence function corresponding to the FRF
shown in Fig. 10.

9. SUMMARY AND CONCLUSIONS

Two methods, Monte Carlo simulation and bootstrap
analysis have been presented for evaluating the statistical
variations in modal parameters identified from measured
FRF data. The variability in these parameters arise from
environmental effects such as thermal gradients, service
conditions such as traffic loads, and from variability
associated with the measurement and data reduction
process.  Note that some of these processes produce
random errors while others produce bias (systematic) errors.

Before modal-based damage identification procedures can
be routinely applied to a bridge, particularly in a remote
monitoring mode, the effects of these variability sources on
the modal-based parameters monitored by the damage
identification algorithm must be quantified.  Such
quantification may require measurements to be made at

TABLE 2
Comparison of Bootstrap and Monte Carlo Statistical

Analysis Results on Data from the Alamosa Canyon Bridge
Mean

(Bootstrap)
95% Conf.

Interval
(Bootstrap)

Mean
(Monte
Carlo)

95% Conf.
Interval
(Monte
Carlo)

Individual Test (30 Averages)
1st Mode

Freq.
7.4998

Hz
0.0100 Hz
(0.0018 Hz)*

7.4997
Hz

0.0023
Hz

2nd Mode
Freq.

8.1341
Hz

0.0064 Hz
(0.0012 Hz)

8.1334
Hz

0.0020
Hz

3rd Mode
Freq.

11.604
Hz

0.0057Hz
(0.0010 Hz)

11.604
Hz

0.0011
Hz

1st Mode
Damp.

2.15 % 0.14%
(0.026 %)

2.15% 0.024%

2st Mode
Damp.

1.08% 0.11%
(0.020 %)

1.07% 0.023%

3rd Mode
Damp.

0.96% 0.031%
(0.0057 %)

0.96% 0.0090%



Data from 11 Tests (30 averages each) Over 24 Hrs.
1st Mode

Freq.
7.3267

Hz
0.101 Hz

(0.0305 Hz)
7.3514 Hz 0.0152 Hz

2nd Mode
Freq.

8.1016
Hz

0.0673 Hz
(0.0202 Hz)

8.1407 Hz 0.0289 Hz

3rdMode
Freq.

11.581
Hz

0.0383 Hz
(0.0115 Hz)

11.547 Hz 0.0233 Hz

1st Mode
Damp.

2.6% 1.2%
(0.36 %)

1.6% 0.26%

2nd Mode
Damp.

1.5% 0.42%
(0.13 %)

0.64% 0.23%

3rd Mode
Damp.

1.3% 0.24%
(0.072%)

0.69% 0.16%

* Values in parentheses correspond to bootstrap confidence
lintervals divided by the square root of the number of
bootstrap samples

different times of the year, during different weather
conditions, and when the bridge is experiencing different
service conditions.  Based on the results of such tests, it is
conceivable that bounds can be developed for the modal-
based parameters that are monitored by the damage
identification system.  Damage must cause changes in
these parameters that are outside these bounds for a
definitive statement to be made regarding the onset of
damage in the bridge.
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